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Shock-wave structure in binary mixtures of chemically 
inert perfect gases 

By FREDERICK S. SHERMAN 
Division of Aeronautical Sciences, University of California, Berkeley 

(Received 13 October 1959 and in revised form 5 February, 1960) 

Starting with expressions for viscous stress, heat flux and diffusion flux, we 
formulate a continuum theory for steady flow of a binary mixture of chemically 
inert perfect gases through a normal shock of arbitrary strength. For shocks of 
vanishing strength, a solution by series expansion in Grad’s (1952) shock-strength 
parameter gives a result essentially the same as found previously by Dyakov 
(1954). For stronger shocks a straightforward numerical integration, quite 
analogous to that useful in the simpler pure-gas problem, is laid out. 

The resulting problem has eight parameters: shock strength, ratio of specific 
heats, ratioof bulkviscosity to shear viscosity, Prandtl number, Schmidt number, 
thermal diffusion factor, molecular mass ratio, and initial mixture concentration. 
A dozen examples were worked out on a simple desk calculator to exhibit the 
influence of some of these parameters. They involve the gas pairs argon40- 
argon36, argon-neon, argon-helium, and xenon-helium. 

In discussing the results, special attention is paid to the degree of success with 
which the weak-shock theory may be extrapolated to arbitrary shock strength, 
and to the question of the accuracy of the Navier-Stokes approximation for a 
mixture of gases of very different molecular weights. 

1. Introduction 
A shock wave in a pure gas is broadened into a continuous transition zone by 

viscosity and thermal conduction, in the view of the continuum theory of gases. 
From this same viewpoint, a shock in a gas mixture is further broadened by 
dissipative species-diffusion processes, and a partial separation of the mixture is 
caused by the gradients within the shock. 

Previous theoretical studies of shock waves and sound waves in binary gas 
mixtures have been made, notably by Cowling (1942), Dyakov (1954), and 
Kohler (1949), and the essential results for very weak waves have found their 
way into important reference works by Herzfeld (1955) and Hirschfelder, Curtiss 
& Bird (1954). Interesting and somewhat related papers on shocks in dusty or 
ionized gases have recently been contributed by Carrier (1958), Jukes (1957), and 
Tidman (1958). The present paper is primarily an extension and elaboration of 
the works of Cowling and Dyakov. Whereas Cowling neglected viscosity, thermal 
conduction and thermal diffusion in order to gain a preliminary insight into 
diffusion effects in shocks, and Dyakov limited his treatment to waves of sufficient 
weakness so that the separation of the mixture could be neglected as a higher order 
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effect at the first stage of calculation, we make a direct frontal attack by numerical 
integration, to find the structure of a shock of arbitrary strength in a binary 
mixture of chemically inert perfect gases, including effects of viscosity, thermal 
conduction, ordinary-, baro-, and thermal-diffusion. 

Of course, even accurate numerical integrations do not make the present theory 
(based on the Navier-Stokes approximations to viscous stress, heat flux, and 
diffusion flux) valid for arbitrary shock strength. Indeed one might intuitively 
expect that the maximum shock strength for which these calculations will give 
realistic predictions would be reduced as the molecular mass ratio of the mixture 
increases, due to the difficulty of maintaining thermal equilibrium between the 
light and the heavy constituents. Thus experiment may prove someday that the 
more ‘interesting’ features of the present results, which mostly appear when the 
mass ratio is fairly large and the shock strength is finite, are not realistic at all. 
Nevertheless, it  has been interesting and instructive to the author to see just what 
the Navier-Stokes approximation says about this rather complicated problem. 

2. Diffusion velocity and conservation of mass 
We take as our starting point the results of Chapman and Enskog for the 

diffusion velocities of a binary mixture of perfect gases, obtained by kinetic 
theory. Equations 8.4, 7 and 8.3, 7 of Chapman & Cowling (1939) may be com- 
bined with the definitions of the total density and mass velocity of the mixture, 

P = Pl+P2, (1) 

Pu = P1u1fp2uZ7 (2) 

to give, in our present nomenclature, 

u, - u = p* Dl,(f( 1 -f )[ M1-iK2 d 
PI M 

Subscript 1 refers to the heavier molecular species andfis the mole-fraction of that 
species f = PIMlPJfl. (4) 

The mean molecular mass M of the mixture depends onf, being given by 

M =fM,+(l-f)M,. ( 5 )  

The binary diffusion coefficient D,, and the thermal-diffusion factor a are positive 
quantities, except in some exceptional gas pairs for which a may be slightly 
negative. 

The qualitative nature of the separation of species within a normal shock can 
be seen directly from (3). If we view the shock as fixed in space, with steady flow 
from left to right so that u > 0, we then expect dpldx > 0 and dT/dx > 0 within 
the shock (unless the situation varies drastically from that in a pure gas). The 
driving forces tending to separate the mixture are d(lnp)/dx and d(lnT)/dx, 
leading respectively to baro-diffusion and thermal diffusion. From (2) we see 
that baro-diffusion speeds up the heavier component, M, - M, > 0,  and slows down 
the lighter component relative to the mass velocity of the mixture. If a > 0, which 
we would normally expect for M, not too close to M, (cf. Chapman & Cowling 
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1952, p. 254), then thermal diffusion slows down the heavier component and speeds 
up the lighter. (This is consistent with the sign convention for a, namely, that it  is 
positive when the heavier molecules seek the colder regions.) Thus under most 
cirumstances thermal diffusion will partially counteract baro-diffusion within 
a shock wave. This same conclusion was reached by Dyakov (1954) and, in the 
related acoustic problem, by Kohler (1949). Of course, once any separation has 
taken place, ordinary diffusion, with driving potential dfldx, will tend to homo- 
genize the mixture. 

In  the absence of chemical reactions each component of the mixture is subject 
to a simple continuity equation, 

plul = m, (constant), ( 6 )  

p2u2 = m2 (constant). 

pu = m,i-m, = m (constant) 
Equation ( 2 )  gives 

as the continuity equation of the mixture. These equations make it clear that 
slowing down a component relative to the mixture velocity increases the con- 
centration of that component relative to its value outside the shock wave. Thus, 
if baro-diffusion dominates thermal diffusion, the lighter molecules will be con- 
centrated in the shock. This is usually the case. The degree of concentration would 
be expected to be greatest about where d(lnp)/dx is maximum. For very weak 
shocks this proves to be at the centre of the shock, and the concentration profile is 
symmetric about this point (Dyakov 1954). For stronger shocks, the maximum 
d(lnp)/dx will be upstream of the maximum of dp/dx, so we expect a peak con- 
centration of the light species upstream of the centre of the shock. This upstream 
shift of the separation maximum is reinforced by ordinary diffusion, which 
accelerates the heavier molecules relative to the mixture when they are upstream 
of the separation maximum and decelerates them after they pass it. 

Note that equations (3), (6) and (8) do not suggest that the relative scarcity of 
heavy molecules in the upstream portion of the shock is compensated by an equal 
enrichment of this species at some other position in -m < x < m, unless dpldx 
should ever change sign. It does not in any of the examples worked out here. The 
tempting intuitive notion that conservation of mass prohibits a net deficiency of 
either species relative to the proportions of the mixture at infinity is not applicable 
to steady-state analysis, and usuaIly arises when we include in our thinking the 
essentially transient idea of shock generation in a mixture of initially homogeneous 
composition. 

An accurate analysis of transient shock formation in a mixture is outside our 
present scope. However, a qualitative description is suggested now in hopes of 
clarifying the relation between the following strictly steady-state results and the 
corresponding ' long-time ' behaviour of a particular shock-formation problem. 
Suppose that a piston is impulsively accelerated to constant velocity in a tube 
containing a mixture initially homogeneous and at  rest. The author supposes that 
in the initial instant (less than a mean molecular collision time) of that piston 
motion, the light molecules struck by the piston fly away from it more rapidly 
than their heavy neighbours. In  the course of subsequent collisions, which 
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transmit the impulse of the piston out into the gas, this behaviour is reproduced 
at the front of the column of gas which has started to move with a mean velocity 
equal to that of the piston, and becomes a characteristic feature of the structure 
of this front (the shock wave). After a sufficient number of collisions, the motion 
and structure of this shock front become locally stationary if viewed by an 
observer moving with the shock speed. 

In  the meantime, the heavy molecules which move away slowly from the 
piston during the initial instant produce a local surplus of this species in the im- 
mediate vicinity of the piston. This surplus is embedded in a region of gas which 
soon has the mean motion of the piston and redistributes itself by ordinary 
diffusion. The region throughout which this original surplus is subsequently 
spread thus grows out from the piston face in proportion to J(time), while the 
shock front moves away from the piston in proportion to time. Between the 
shock and the region of redistribution of the heavy molecules which are ‘left 
behind ’ during shock formation, there appears an ever-lengthening column of 
homogeneous mixture having the velocity of the piston and the composition of 
the undisturbed gas. In  the steady-flow analysis of the shock structure, the 
properties of this column are those supposed to exist at  x = +a, so that the 
residual effects of shock formation, including the local enrichment of heavy 
molecules which compensates for the local depletion in the shock, are specifically 
excluded from the steady-state theory. 

3. Conservation of momentum 
The diffusion equation (1) results from the momentum conservation principle 

applied to the relative motion of the constituents of the mixture. The momentum 
equation for the mixture moving as a whole is 

which differs from that for a pure gas only through the dependence of ,u and K on 
f i n  the present case. In  fact, virtually nothing is known about the bulk viscosity 
coefficient K for gas mixtures, since this additional dissipative mechanism is hard 
to separate experimentally from ordinary viscosity, heat conduction, and dif- 
fusion. We carry the symbol  in this analysis just to be open-minded, although 
the subsequent calculation will assume K/,U to be constant, with no particular 
physical justification. 

4. Conservation of energy 

integrated to give 
The differential equation of conservation of energy for the mixture may be 

(10) 
du 
d X  

pu(h + +u2) - u(+p + K )  - + qz = &Q = m(h, + 4~:). 

The specific enthalpy in (10) is given by the rule for mixtures of chemically 
inert perfect gases 

Ph = Plhl+P,h, = ( P l C p l + P 2 C p Z ) T -  (11) 
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In  (1 1) explicit use is made of the important assumption that both components of 
the mixture share the same temperature. 

The heat flux q2 in (10) contains two terms in addition to the ordinary Fourier 
conduction, one a simple convection of partial enthalpies at the diffusion velocity, 
the other due to the diffusion thermo-effect (Chapman & Cowling 1952, equa- 
tion 8.41, 3)) 

q2 = -h-+pl(ul-u) dT (hl-h2+-- 

dx Ml M2 P 

When (1 2) is substituted in (lo), it  proves convenient to group together all the 
enthalpy terms. One easily shows that 

puh+p1(u1-u) (hl-hz) = mih.l+m2hz 

= (mlcpl+ m2cpz) T 

= mcpT, 

where cp denotes not the local and variable specific heat of the mixture, but the 
specific heat of the mixture outside the shock (hence a constant for any given 
shock problem). The last step above follows directly from the basic definition of 
specific heat of an inert perfect gas mixture 

PCp = PlCPl+ PZCPZ 

and the observation that outside the shock u1 = u2 = u. 
Equation (10) is thus rewritten as 

(u1-u)pa = $&. (13) 
du dT p M2 

pu($u2 +c,T) - ~ ( t p  + K ) -  -A-  + 1 
dx d x  pMlM2 

5. Equation of state 
If we define a gas constant for the mixture outside the shock wave by 

R = PolPoTo, 

then inside the shock, where the mean molecular mass is variable, we have 

6. Dimensionless variables and boundary conditions 
Equations ( 1 )  through (7)) (9), (13) and (14) give ten independent relations 

for the ten unknowns p ,  p l ,  p2 ,  u, ul, u2, f, M ,  p ,  and T.  They can be reduced to 
three coupled first-order differential equationsfor u, T and f. These, together with 
a sufficiency of transport property data and the boundary conditions 

du dT df _ - _ - _ -  - - 0  at x=?co 
dx dx dx 

- 

define the problem. 
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We introduce dimensionless variables and parameters as follows: 

v = mu/P (velocity), 
r = m2RT/P2 (temperature), 
a = mQ/Pz (shock strength), 
y = cp/(cp - R) (specific heats ratio), 

X = -+-, 
3 P  

8 = MJM, (molecular mass ratio), 
fo = mole fraction of heavy molecules outside the shock, 

L = p/m. 

4 K  

and the reference length 

The three equations for v, 7 andf can be arranged as autonomous equations for 
dvldx, d7/dx and dfldx as follows 

7. Method of solution 
The method used to solve (16)-(18) numerically is quite commonplace in the 

shock-wave literature (e.g. Grad 1952, Gilbarg & Paolucci 1953, or Talbot & 
Sherman 1959) and will only be described in principle here." 

The independent variable x can be easily eliminated by dividing (17) and (18) 
by (16). This yields two 'direction field' equations for dr/dv and dfldv, for which 
we seek a particular solution joining the upstream and downstream states of the 
gas. The co-ordinates of these states (v, I - ,  f at x = & a) are easily found by setting 
dvldx = d7/dx = d f /dx  = 0 in (16), (17) and (18). 

Since these state points are obviously singular points of the direction-field 
equations, a preliminary investigation of the direction field in their vicinity must 
be made to determine the end-slopes of the desired solution curve and the correct 
point from which to start the numerical integration. This analysis shows in the 
present case that the downstream singular point is almost invariably a saddle 
point and the upstream singular point a node, just as they are for the Navier- 
Stokes equations in a pure gas. The integration must be started from the down- 
stream singular point and this guarantees the existence of a unique solution. 

After the solution curve is found in v-r-f space, the spatial distribution of 8 is 
found by a numerical quadrature of (16). 

* Readers interested in these details are invited to communicate directly with the author. 
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8. Concentration dependence of transport properties 
The numerical integration of the direction-field equations and the quadrature 

of (1 6) require a knowledge of the concentration and temperature dependence of 
viscosity p, thermal diffusion factor a, and the ratios p / h  and p/pD,,. Numerical 
data could of course be used directly, but for the present sample calculations 
simple analytic approximations were introduced after a study of data for argon- 

-0 
'0 02 04 06 08 10 

f = mole fraction of argon 

FIGURE 1. Properties of argon-helium mixtures. 

helium mixtures (cf. figure 1; Chapman & Cowling 1952, pp. 232, 243, 248; 
Hirschfelder et al. 1954, p. 584). These approximations provide a local fit to the 
empirical transport property behaviour in the vicinity of the known mixture 
state ahead of the shock. They are 

p oc Tf, independent off, 

p / h  a M ,  independent of T, 

,u/pD,, a l/M, independent of T, 
a cc 1 / M ,  independent of T. 

While some of these are certainly inaccurate if applied to large variations off 
and T, they are entirely adequate for the purpose at hand, since f actually does 
not vary widely in a given shock, and the assumed temperature dependence is 
fairly realistic except in the case of a. Thermal diffusion is fortunately a sufficiently 
small effect so that sizeable errors in a produce much reduced errors in the shock 
profiles. 
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If we introduce the Prandtl number, Schmidt number, and thermal-diffusion 
factor of the mixture aheadof the shock as basic parametersof the shock-structure 
problem, the approximations above state that 

,ucp/h = Pr (MIM,) = Pr [1+ (6'- l)f]/[l+ (6- l)fO] 

IUlfDl2 = sc (MOIM) 
and CL = CLo(il!(o/M). 

(remember that cp already refers to the mixture outside the shock), 

9. Series solution for weak shocks 
In  the limit of vanishing shock strength, .A --f 1, a series-expansion solution of 

(16), (1 7) and (1 8) is appropriate, and the first terms have been found by Dyakov 
(1954), albeit in a nomenclature quite different from ours. We proceed a little 
differently here, expanding in terms of the shock-strength parameter proposed by 
Grad (1 952) instead of the pressure ratio, Dyakov's choice. One hopes that the 
former expansion parameter, which remains finite as -+ GO, would lead to 
quicker convergence, or at  least better approximation by the first term of the 
series, at moderate Mach numbers. In  fact, this seems to be the case. 

Grad's parameter e is introduced by 

1 (-) y-1 (*+e), 
v o = 2  y + l  y - 1 -  

where the + sign gives vo(z = - co) and the - sign uo(x = + GO). It is related to 
our earlier parameter a by 

and to the shock Mach number by 

Next we define new dimensionless velocity and temperature variables, which 
vary from - 1 to + 1 through the shock, whatever the value of e. These are wand t ,  
given by v=-(-)("'-+.W), 1 y - 1  

2 y+1 y - l  

4y +2st-.2 . 1 1 y - 1 2  
.=4(y+i) ((y--I)l 

A new concentration variable may be introduced by 

fo- f = .2#. 

w = w(0) + ew(1) + eZw(2) + . . . , 
t = $0) + sts + €2t(2)  + . . . , 

$4 = p) + e p  + e 2 p  + . . . , 

We now expand w, t and $4 in E, i.e., 
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and substitute these series into (16), (17) and (18). Grouping terms of like order 
in e, and solving the resulting simple differential equation for w@), we get 

MI-MZ 7-1 
“0 

~-~ 
MO Y 

Y - 1 + ~ f o ( 1  - t o )  
x+,- Xc Y 

for the lowest-order non-vanishing terms in w, t and 4. The corresponding result 
for shock thickness based on maximum slope, 

8, = 2/ldw/dzl may, (29) 

When our nomenclature is brought into agreement with that of Dyakov (1954), 
these last four results agree perfectly with his. The quantity in braces in (30) 
is also identical with the corresponding factor in the sound-attenuation coefficient, 
found by Kohler (1949), and cited by Hirschfelder et al. (1954, p. 732, equa- 
tions 11.P20). It may be noted in passing that, in Herzfeld (1955, p. 691, equa- 
tions 18-3), the last term in this brace is cited incorrectly by omission of the 
factor fo( 1 -fo) which makes that term vanish for a pure gas. 

Besides giving a check on the correctness of (IS), (17) and (18), equations (28) 
and (30), when boldly extrapolated to finite shock strengths, give a very useful 
approximate survey of the results which are obtained more accurately by 
numerical integrations. 

10. Sample numerical calculations 
The dozen examples shown here were picked to exhibit the following. 
(a )  The effect of shock strength on the concentration-versus-velocity integrals 

for a single initial gas mixture (argon-helium, equal parts by moles). The Mach 
numbers chosen were 1.34 (e = l), 2.05 (e = 2), 4.84 (e = 2.8) and 00 (e = 3), the 
last obviously just for fun. These results are shown in figure 2, where they are 
compared with the approximation given by equations (24) and (28). As might 
have been expected, the weak-shock approximation is quite accurate at e = 1, 
and discrepancies between it and the numerical results increase continually with 
increasing e. The merit of the series solutions in terms of the parameter 8, which 
remains finite as dl -+ 00, is seen from the fair approximation given by its first 
term even at very large shock strengths. 

(6)  The effect of initial mixture ratio on various shock properties, for a parti- 
cular gas-pair (argon-helium) and shock strength (e = 2). Thus figure 3 shows 
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concentration-velocity integrals on a semi-logarithmic scale (to emphasize per- 
centage changes in concentration). Note that these are decidedly more sym- 
metrical about the mid-velocity, and thus agree better qualitatively with the 
weak-shock theory when ffl is small, than when it is large. This is a coincidence 
brought about by the superposition of two effects, the first being the general 

1.0 

W 

FIGURE 2. Concentration -velocity 
integrals for various shock strengths; 
jo  = 0-5. 

- &=09 - - - (4 

f f l = 0 5  (b) 

f o  = 025  / (c )  

movement of the maximum separation towards the upstream side of the shock 
(towards the right in figure 3) in response to ordinary diffusion and the fact that 
the separating potential is lnp rather than p (as discussed in $ 2 ) .  The second 
effect is intuitively rather obvious, and well illustrated by figures 4 and 5. When 
the initial mixture contains just a little of the lighter gas, the separation is brought 
about by the light molecules of the shocked gas running out ahead of the main 
shock or mean-velocity transition of the entire mixture. This evidently shifts the 
maximum separation even farther upstream relative to the main shock and leads 
to the very asymmetrical f-v curves in figure 3 a. When the initial mixture con- 
tains just a little heavy gas, the heavier molecules lag behind the main shock, thus 
shifting the maximum separation downstream and partially cancelling the first 
effect mentioned above. 

If the reader has been distracted from the foregoing argument by the rather 
odd appearance of the argon velocity profile in figure 5, he is forgiven forthwith. 
The behaviour of that curve, which indicates that the argon is momentarily 
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accelerated, rather than slowed down,upon entry into the shock, is the single most 
intriguing-and perhaps unbelievable-result of the present study. It implies, 
upon transformation of co-ordinates to a frame at  rest in the unshocked gas, that 
upon arrival of the shock the argon first jumps backwards, then turns and runs 
fast to catch up with the shock. The same prediction is inherent in Dyakov's weak- 
shock theory, which incidentally predicts a corresponding undershoot of the 
helium velocity in figure 4. It is interesting to note that the latter prediction is one 
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FIGURE 4. Shock profiles with very little light gas; fo = 0.9, E = 2. 
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FIGURE 5. Shock profiles with very little heavy g a ;  fo = 0-02, E = 2. 
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qualitative implication of the weak-shock theory which is refuted by the accurate 
numerical integrations. Regarding the physical plausibility of this effect, the 
author has no very fixed opinion as yet. It is certainly hard to imagine the source 
of the effect from a molecular viewpoint and no corresponding effect is found in 

0875 

0775 

0675 

.v 0575 

0475 

0.375 

PUXIP- 
FIGURE 6. Shock profiles with equal initial proportions of light and heavy gases ; 

fo = 0.5, g = 2. 

2) 

FIGERE 7. Entropy-velocity integrals; 8 = 2. 

Carrier’s dusty-gas analysis, if the latter may be considered to give an indication 
of proper physical behaviour in a limit of very large mass ratio. A mass ratio of 
10 (argon-helium) and shock Mach number of 2.05 may simply carry the present 
analysis beyond the valid range of the Navier-Stokes approximation although 
that approximation would still be quite accurate for a Mach 2.05 shock in a pure 
monatomic gas (cf. Talbot & Sherman 1959). 
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Figures 4 , 5  and 6 (the last showing velocity profiles for the intermediate case 
f o  = 0.5) emphasize that a shock wave in a mixture may be quite complicated 
compared to that in a pure gas, and that it may actually extend over a distance 
which is quite large compared with the conventionally defined shock thickness 
(cf. equation (29)). They also suggest that experimentalists interested in this 
problem should take care to know exactly to what flow properties their instru- 
ments respond. 

Figure 7 shows theeffect of initial mixture ratio on the entropy-velocityrelation- 
ship within the shock. Actually, the quantity labelled s here is not strictly the 
entropy of the actual non-equilibrium state of the gas at a point inside the shock, 
but the entropy of the equilibrium state having the same pressure, temperature 
and concentration. This is a quantity easy to calculate-in our case from the 

It is presumably slightly larger than the entropy of the true non-equilibrium 
state, since a bit of fluid, if isolated in the latter condition, would spontaneously 
tend to the condition whose entropy we calculate. 

Setting aside this rather fine point, we see in figure 7 just what we expect. While 
the mixture is being separated in the upstream portion of the shock, entropy rises 
a t  a rate smaller than in a pure gas shock of the same strength. While remixing is 
taking place farther downstream, entropy rises faster (or falls more slowly) than 
in the pure gas. 

Figure 8 shows some over-all or extreme properties of the shock transition as 
functions of fo. From 8a we see both that diffusion effects broaden a shock in 
A-He quite spectacularly, and that the weak-shock theory, equation (30), gives 
a very good idea of the dependence of this broadening upon initial mixture ratio. 
From 8 b we see that the maximum ratio of diffusion velocity to mixture velocity, 
(ul - u2)/u, is smallest when diffusive broadening of the shock is largest, and that 
the highest diffusion velocities appear when there is only a trace of one gas or the 
other present. The quantity plotted is simply related to f by use of equations ( 5 ) ,  
(6) and (7) ,  i.e. 

The weak-shock approximation to this result is 

This equation gives a fairly true image of the numerical results, particularly for 
small fo, but is considerably worse at  large f o  for reasons reviewed at the beginning 
of this subsection. 

(c) The effect of mass ratios (and accompanying mixture properties) at con- 
stant fo and shock strength. Instead of making an artificial parameter study by 
changing 6 alone, we deemed it more interesting to treat real mixtures of various 
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gases, to attain a wide range of 6 along with the associated changes in a, PT, and Sc 
which nature provides. Thus calculations were made for fo = 0.5 and E = 2 in the 
mixtures 4oA-36A (6 = 10/9), A-Ne (0 = 2), A-He (6 = 10) and Xe-He (0 = 32.8). 
Table 1 shows the variation of shock thickness and maximum diffusion velocity 

0 -  

with 0 in these mixtures, all 

24 

- 

- 
I I I I 

20 

-E 16 

12 

* s 
& 

of which have y = 513 and X = 413. 

FIGURE 8. Shock thickness and maximum diffusion velocity ; E = 2. 0, Numerical results. 

P& 
P* - 

MI - ilf2 Numerical Equation ___ 
Gaspair 0 M ,  a0 Pr  Sc integration 49 

Pure argon 1 0 0 0.704 - 8.15 8.55 
MA36A 10/9 0.10526 0.013 0.704 0.784 8.18 8.58 
A-Ne 2 0.66667 0.17 0.667 0.750 8.99 9.49 
A-He 10 1.6364 0.37 0.440 0.330 1944 31.15 
Xe-He 32.8 1.8817 0.434 0.250 0.200 35.8 37.8 

( ? ? )  
mar 

, 
Numerical Equat.ion 
integretion 52 
- - 

0.0209 0.0198 
0.116 0.112 
0-273 0.284 
0.276 0.301 

TABLE 1. Effect of @ on shock thickness and maximum diffusion velocity. f,, = 0.6, X = 2.0.5, y = 5/3, 
X = 4/3 for all cases; p* = viscosity at point of maximum ,u du/dx. 

We see again that the weak-shock theory is very useful for rough predictions 
a t  finite shock strength. Note that quite refined experimentation would be 
required to detect either the minute separation of the isotopic mixture 40A-36A, 
or the broadening of the shock due to diffusion in this case. A similar result is 
found for shocks in atmospheric air, in which the importance of 6 is emphasized 
by the fact that the diffusive shock broadening due to the 0.94 O,(, of argon present 
is about 80 yo as much as that due to the diffusion of the oxygen and nitrogen. 
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11. Criticism of the theory when 8 is large 
As mentioned several times above, the present theory seems deficient in the 

case of large 8, when it insists that both mixture components always share the 
same temperature. This has led to some intuitively implausible results in the 
examples worked out here for argon-helium mixtures. For example, figure 4 
shows the mean-velocity change of the helium almost half-way accomplished 
before the random velocity (temperature) of this constituent has been appreciably 
influenced. One might intuitively expect these two quantities to start changing 
at  about the same time. 

To get a better picture of actual events during shock passage through a mixture 
with large 8, one might try at  least two theoretical approaches. The first is to 
devise some supplementary ‘relaxation’ equation to account for the difficulty of 
maintaining thermal equilibrium between light and heavy constituents, and to 
couple this equation to the present set, modifying the latter somewhat to admit 
the existence of two different temperatures. An example of this approach is given 
by Jukes (1957) who discusses shock structure in a mixture of protons and 
electrons. Jukes’s calculation shows a significant difference between electron and 
ion temperatures throughout a wide zone ahead of the ‘velocity shock’ but sheds 
no direct light on the present problem, since diffusive separation of electrons and 
ions was taken to be negligible in view of the intense electric field which this would 
produce. Regarding this technique it may be noted pessimistically that the 
coupling of the ordinary sort of relaxation equation (cf. Jukes 1957) to the 
Navier-Stokes equations leads to very nasty singular-point behaviour of the 
resulting equations, which precludes straightforward numerical integration from 
one side of the shock to the other. 

The second possibly profitable approach would be an extension of the method 
of Mott-Smith (1951) to treat a gas mixture. Again, this approach has been 
applied to a hydrogen plasma (Tidman 1958), but not to a mixture in which 
diffusive separation is unrestrained by electric fields. 

Finally, of course, one might attempt an experimental determination of the 
true state of affairs with shocks in, say, A-He mixtures. In  fact, some early work 
along this line, by Professor D. F. Hornig of Brown University (now of Princeton) 
gave the author his first inclination to study this problem. 
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